NOTICE OF ORDINARY MEETING

The next meeting will be held in the
MUSEUM EDUCATION BUILDING (behind the main Museum Bldg.)
North Terrace, Adelaide at

8.00 p.m. MONDAY, 22ND MARCH, 1971

AGENDA.

1. Apologies.
2. Minutes of Meeting held 26th October, 1970.
3. Tabling of Papers and Journals.
4. Election of New Members:
The following new members were elected at the last Council Meeting:
 Miss S. Bazdar
 Miss J. G. Schuweers
 Mr. D. M. Jones
 Mr. A. Taylor
 Mr. L. J. Warren
5. Other Business.
6. The following films will be shown:
 (i) "The Islanders" - a film of the Torrens Strait Islands.
 (ii) "The Esperance Story" - the plan to introduce farming to Aboriginal communities in Esperance, W.A.
 (iii) "Old Camp Sites at Tika Tika".
 (iv) "At Patantja Claypan".

The last 2 films are from the series dealing with the life of the Aborigines of the Western Desert of Central Australia.

R. D. J. Weathersbee,
Honorary Secretary,
C/- South Australian Museum,
North Terrace,
ADELAIDE, S.A. 5000
NOTES ON CYLCONS.

(By Owne Broughton)

PART IV.: THE PHYSICAL CHARACTERISTICS.

The following description of the aboriginal artifacts known as cylcons is divided under the heading of material, shape and surface characteristics.

(a) Material: Cylcons are stone artifacts, none that I know of has been manufactured of wood or clay. To qualify this statement it should be explained that some are composed of impure kaolin but this seems to be a natural occurring substance as bedding planes are usually discernable in the clay, proving that the object has been cut or ground out of a block of clay rather than moulded from it in its plastic state. Gypsum, sometimes referred to as "kopil, has been mentioned as a material of cylcons, it is the substance usually used for widow's caps and lenticular grave markers, but without a chemical analysis it seems to me that most of the specimens referred to as being made of "kopil are really composed of impure kaolin or a highly argillaceous sandstone. Lindsay Black, 1942, p. 13, states: "After carefully examining all the specimens available, I have been unable to find any composed of gypsum."

The most common of the rocks and minerals used are various types of sandstone both fine and coarse grained. These grade from the highly argillaceous type mentioned above to hard, compact sandstones which then grade into quartzites. The next most common material is a mudstone, sometimes called a clay-slate, grey, green and tan varieties can be distinguished, some with large lighter spots. The more unusual types of material used include several varieties of igneous and metamorphic rocks, limestone (this very rarely and confined to Queensland), ironstone and red ochre, several specimens, and one specimen of silicified wood. The sources of supply of all these various types of rock have not yet been investigated and no quarry sites are known.

(b) Shape: Cylcons, which range in length from 8 cms. to 75.5 cms., have been classified under the following shapes:- cylindrical, fusiform, conical, cornute and phacoid. This is a series and one type merges into another as can be seen in Fig. 1. The cylindrical (b, l.) can merge into both fusiform (o, n, h.) and the slow-taper conical (j), the latter then merging into the quick-taper conical (k, l). There are also curved cylindrical forms (e) which merge into the cornute (f, p). There seems also a definite series between cornute and those phacoid specimens with a point (r), which merge then into those without a point (s). The cross section shape of the cylindrical, fusiform and conical specimens is usually circular but in some cases may be elliptical, irregular or flattened. Cornute specimens are mostly elliptical with the curve toward the long axis of the ellipse, and phacoid specimens are always so. An exception is seen in the case of the curved conical stones of elliptical section, in which the curve is toward the short axis of the ellipse.
PART IV: THE PHYSICAL CHARACTERISTICS (Cont'd):

The apex or distal end of the stone can vary from sharp pointed to domed, a chisel-like point does occur but it is rare. The base of the clycon is, in many cases concave or cupped, in some instances this may be as deep as 7.5mm and is usually well formed. A curious fact, however, is that in many instances, especially with those composed of mudstone, the concavity seems to be water-worn, whereas the surface of the stone is not. Double cups are known as also are concavities which are off-centre with the circumference of the base. The flat based clycons are also numerous but those with convex or rounded bases are restricted to the western portion of the clycon area of distribution, and usually are composed of a dark grey or dark yellow sandstone; the concave and flat bases, however, occur in all types of material. A small proportion of clycons seem to have had a secondary use as a grinder or pounder in which case the base is flat to slightly convex.

Many clycons have had flakes, sometimes very large ones, struck from around the periphery of the base. This seems to have been deliberately done rather than being the result of the use of the stones as a pounder and occurs in all types of material. There is record of incising occurring on the flake scars and also in a number of cases the scarred area has been hammer-dressed or re-ground.

(c) Surface Characteristics: The surface of the stone can vary from a rough flaking, characteristic of clycon 'blanks' or unfinished specimens to hammer-dressing of various degrees of fineness, and finally to ground specimens, in many cases still retaining some hammer-dressing but in others the whole showing a finely ground and polished surface. In a number of cases there appears to be a secondary use polish of the distal portion of the stone extending toward the base to the extent of one third to one half the length of the specimen.

The proportion of plain or unincised specimens to incised ones has not yet been estimated in regard to my own records but Etheridge, 1916, gives 54 out of 105 as being unincised, and Lindsay Black, 1942, gives 78 percent as being without incising. The geographical distribution of incised and unincised clycons so far plotted for some 600 specimens shows the unincised type occurring throughout the range with the incised specimens occupying the eastern two thirds of the area. This matter of distribution will be the subject of a future paper so will not be further discussed at this stage. The fact that a clycon is incised seems to bear little relationship to the type of material, some soft sandstone and mudstone specimens are unincised whilst even some of the very hard quartzite ones have incised markings. It has been suggested that the unincised specimens were at one time painted and two clycons I have seen seem to bear traces of painting. One, in the Kurtz collection, Portland, Victoria, (O.B. Card P. 280) has three sets of concentric rings or circles 4 cm., 1.5 c.m and 0.7 cm, in diameter composed of a light red pigment: these are all situtated the butt portion of the stone. Another clycon, in the South Australian Museum (A 30779, O.B. Card S. 88), has closely spaced longitudinal stripes running the length of the specimen, these stripes are light grey in colour. The latter specimen is, however, an incised one as it has on it 16 "emu-track" or "broad-arrow" motifs which seems to contradict the theory that painting would be in lieu of incising.
PART IV: THE PHYSICAL CHARACTERISTICS (Cont'd.)

The incised specimens range from those covered prolifically with markings to those with only one or two incisions. In some cases the markings seem to have been made at different times or at least with quite separate types of implement, but in the majority of cases it appears that the design has been composed and executed as a whole. The motifs which are used on cylcons differ markedly from designs on the petroglyph sites, such as Mootwingee and Panaramatee which lie within the distribution area.

The most frequent occurring motif on incised cylcons is a short to medium length line transverse to the axis of the stone, this may be single, in pairs, or in groups of several lines. In some cases there may be so many very short lines one below the other that they form a longitudinal composite line. The transverse line may be so long as to encircle the stone as a circumferential ring or if toward the apex what I have termed a distal ring, or again it may form a spiral several times around the cylcon. Longitudinal lines likewise vary in length from short nicks to those running the length of the stone and can also be short and side by side to form a composite transverse line or ring. Another commonly occurring motif is the so called "emu track" or "broad arrow". These can vary in size from small to very large, they can point in any direction and can occur singly or in lines one behind the other. Sometimes the central line of the "broad arrow" is prolonged, the two barbs can cross or there can be one barb. Another motif is that sometimes called a "laced design", i.e. a longitudinal line flanked by two rows of short transverse lines, this occurs mostly, but not exclusively, on the short side of phacoid specimens. My researches on distribution are beginning to show that the geographical range of this motif is small.

The above are the most frequent designs, one type can be exclusive to a single cylcon or several or all types can occur on the one stone. Other designs do occur but are infrequent, one of these is interesting as being the only design to occur on the concavity at the base of some cylcons. It is deeply incised stellate or star design, only three examples of known locality are recorded, all in the far south east of the cylcon range; one of these is illustrated by Etheridge, plate VIII fig. 2 and by Lindsay Black p. 99, fig. 113.

REFERENCES

BLACK, Lindsay: Cylcons: the mystery stones of the Darling River Valley. 1942.
